6 research outputs found

    Indoor Visible Light Communication:A Tutorial and Survey

    Get PDF
    Abstract With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others

    User activity detection and channel estimation of spatially correlated channels via AMP in massive MTC

    No full text
    Abstract This paper addresses the problem of joint user identification and channel estimation (JUICE) for grant-free access in massive machine-type communications (mMTC). We consider the JUICE under a spatially correlated fading channel model as that reflects the main characteristics of the practical multiple-input multiple-output channels. We formulate the JUICE as a sparse recovery problem in a multiple measurement vector setup and present a solution based on the approximate message passing (AMP) algorithm that takes into account the channel spatial correlation. Using the state evolution, we provide a detailed theoretical analysis on the activity detection performance of AMP-based JUICE by deriving closed-from expressions for the probabilities of miss detection and false alarm. The simulation experiments show that the performance predicted by the theoretical analysis matches the one obtained by the numerical results

    User activity detection and channel estimation of spatially correlated channels via AMP in massive MTC

    No full text
    Abstract This paper addresses the problem of joint user identification and channel estimation (JUICE) for grant-free access in massive machine-type communications (mMTC). We consider the JUICE under a spatially correlated fading channel model as that reflects the main characteristics of the practical multiple-input multiple-output channels. We formulate the JUICE as a sparse recovery problem in a multiple measurement vector setup and present a solution based on the approximate message passing (AMP) algorithm that takes into account the channel spatial correlation. Using the state evolution, we provide a detailed theoretical analysis on the activity detection performance of AMP-based JUICE by deriving closed-from expressions for the probabilities of miss detection and false alarm. The simulation experiments show that the performance predicted by the theoretical analysis matches the one obtained by the numerical results

    Joint channel estimation and device activity detection in heterogeneous networks

    No full text
    Abstract Internet of Things (IoT) has triggered a rapid increase in the number of connected devices and new use cases of wireless communications. To meet the new demands, the fifth generation (5G) of wireless communication systems features native machine type communication (MTC) services in addition to traditional human type communication (HTC) services. Some of the main challenges are the heterogeneous requirements and the sporadic traffic of massive MTC (mMTC), which makes the orthogonal allocation of resources infeasible. To overcome this problem, grant free non-orthogonal multiple access schemes have been proposed alongside with sparse signal recovery algorithms. While most of the related works have considered only homogeneous networks, we focus on a scenario where an enhanced mobile broadband (eMBB) device and multiple MTC devices share the same radio resources. We exploit the approximate message passing (AMP) algorithm for joint device activity detection and channel estimation of MTC devices in the presence of interference from eMBB, and evaluate the system performance in terms of receiver operating characteristics (ROC) and channel estimation errors. Moreover, we also propose two new pilot sequence generation strategies which improve the detection capabilities of the MTC receiver without affecting the eMBB service

    Joint coherent and non-coherent detection and decoding techniques for heterogeneous networks

    No full text
    Abstract Cellular networks that are traditionally designed for human-type communication (HTC) have the potential to provide cost effective connectivity to machine-type communication (MTC). However, MTC is characterized by unprecedented traffic in cellular networks, thus posing a challenge to its successful incorporation. In this work, we propose a unified framework for amicable coexistence of MTC and HTC. We consider a heterogeneous network where machine-type devices coexist with enhanced mobile broadband (eMBB) devices and propose transceiver techniques that promote efficient signal recovery from these devices. For this, we present an eMBB pilot and MTC data generation strategy that facilitates joint coherent decoding of eMBB data and non-coherent decoding of MTC data. Furthermore, we assess the feasibility of coexistence using receiver operating characteristics, outage probability, and normalized mean square error (NMSE). Our numerical results reveal that a harmonious coexistence of the heterogeneous services can be achieved with properly configured average signal-to-noise ratios and pilot length

    An overview of key technologies in physical layer security

    No full text
    Abstract The open nature of radio propagation enables ubiquitous wireless communication. This allows for seamless data transmission. However, unauthorized users may pose a threat to the security of the data being transmitted to authorized users. This gives rise to network vulnerabilities such as hacking, eavesdropping, and jamming of the transmitted information. Physical layer security (PLS) has been identified as one of the promising security approaches to safeguard the transmission from eavesdroppers in a wireless network. It is an alternative to the computationally demanding and complex cryptographic algorithms and techniques. PLS has continually received exponential research interest owing to the possibility of exploiting the characteristics of the wireless channel. One of the main characteristics includes the random nature of the transmission channel. The aforesaid nature makes it possible for confidential and authentic signal transmission between the sender and the receiver in the physical layer. We start by introducing the basic theories of PLS, including the wiretap channel, information-theoretic security, and a brief discussion of the cryptography security technique. Furthermore, an overview of multiple-input multiple-output (MIMO) communication is provided. The main focus of our review is based on the existing key-less PLS optimization techniques, their limitations, and challenges. The paper also looks into the promising key research areas in addressing these shortfalls. Lastly, a comprehensive overview of some of the recent PLS research in 5G and 6G technologies of wireless communication networks is provided
    corecore